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Proof by Construction

a.k.a. direct proof

Simplest and easiest method
Not very helpful in advanced topics
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Introduction and Review of Probability Basic Proof Techniques

Proof by Construction

Theorem
If a and b are consecutive integers, then the sum a + b is odd.

Proof.
Assume that a and b are consecutive integers. Because a and b are consecutive
we know that b = a + 1 and a + b = 2a + 1. Thus, there exists a number k such
that a + b = 2k + 1, so the sum a + b is odd.

Each proof ends with the phrase “proof is complete” or � or QED which stands
for quod erat demonstrandum (what was to be demonstrated/shown).
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Proof by Contradiction

In order to demonstrate P ⇒ Q,

Assume that P is true and ¬Q is true.
Use these two facts to demonstrate a contradiction
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Proof by Contradiction

Theorem
If a and b are consecutive integers, then the sum a + b is odd.

Proof.
Assume that a and b are consecutive integers. Assume also that the sum a + b is
not odd. When a + b is even, it can be represented as 2k, k ∈ Z. However, the
integers a and b are consecutive, meaning b = a + 1. Thus, we have derived that
2k = a + a + 1, and also that a = k − 1

2 . As both a and k should be integers, this
is a contradiction.
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Proof by Induction

Here we consider the statement to be proven in recursive form and
Show that a propositional form P(x) is true for some basis case (usually
when x = 1).
Assume that P(n) is true for some n
Show that P(n + 1) is true.
By the principle of induction, the propositional form P(x) is true for all n
greater or equal to the basis case.

(Why?)
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Proof by Induction

Theorem
If a and b are consecutive integers, then the sum a + b is odd.

Proof.
The sum 1 + 2 = 3 is odd. Thus, the statement is true when a = 1. Assume that
the statement is true for some a and b. This means, for some consecutive a and b
we have that a + b is odd. Next, we have to prove that the statement is true for
a + 1 and b + 1. Sum of these two integers gives a + 1 + b + 1 = a + b + 2. a + b
is known to be odd (by previous assumption), thus a + b +2 should also be odd as
adding two to any integer does not change that integer’s evenness or oddness.
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Exercise

Prove that
√
2 is irrational.
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Introduction and Review of Probability Review of Probability

Basic Definitions

Sample Space: Set of all possible outcomes of an experiment, denoted by S

Examples:
You flip a coin S = {H,T}
You roll a die S = {1, 2, 3, 4, 5, 6}
You roll two dice S = {(1, 1), (1, 2), (1, 3)...}. What is |S|?

Event: A subset of sample space, i.e., outcome, e.g., E = {H} for coin toss
For two events F and E of a sample space S,
E ∪ F : outcomes that are either in E or F or both
EF : outcomes that are in both E and F
Example:
For a die roll, let E denote even numbers and F denote number less than or equal
to 3.
E ∪ F = {1, 2, 3, 4, 6}
EF = {2}
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Introduction and Review of Probability Review of Probability

Probabilities Defined on Events

For each event E of the sample space S, a number P(E ) is defined as the
probability of the event E if it satisfies the following three conditions:

1 0 ≤ P(E ) ≤ 1

2 P(S) = 1
3 For any sequence of events E1,E2, . . . that are mutually exclusive, then

P(∪∞n=1En) =
∞∑

n=1
P(En)

Intuitively, if an experiment is repeated over and over again then (with probability
1) the proportion of time that event E occurs will just be P(E ).
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Introduction and Review of Probability Review of Probability

Probabilities Defined on Events

We can write the probability of a complement of an event using probability of that
event. Since the events E and Ec are always mutually exclusive and since
E ∪ Ec = S, we have

1 = P(S) = P(E ∪ Ec) = P(E ) + P(Ec)

thus
P(Ec) = 1− P(E )

Also note that

P(E ∪ F ) = P(E ) + P(F )− P(EF )
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Conditional Probabilities

Prior (Posterior) probability of a random event or an uncertain proposition is
the unconditional (conditional) probability that is assigned before (after) relevant
evidence is taken into account.

Conditional probability that E occurs given that F has occurred is denoted by

P(E |F )

Because we know that F has occurred, it follows that F becomes our new sample
space and hence

P(E |F ) = P(EF )
P(F )
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Conditional Probabilities

Example: Assume that each child of a family is equally likely to be a boy or girl.
They have n children. What is the probability that all are girls?

What is the
conditional probability that all are girls given that at least one of them is a girl?
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Remember Conditional Probabilities

Prior (Posterior) probability of a random event or an uncertain proposition is
the unconditional (conditional) probability that is assigned before (after) relevant
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Conditional probability that E occurs given that F has occurred is denoted by
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Independent Events

Two events E and F are said to be independent if

P(EF ) = P(E )P(F )

Think of what this implies for P(E |F )
Example: Suppose we toss one coin. Let E = Heads,F = Tails. Are these
independent? Are these mutually exclusive?
Suppose we toss two dice. Let E = Sum is 6,F = First die is 4. Are these
independent?Are these mutually exclusive?
Suppose we toss two dice. Let E = Sum is 3,F = First die is 4. Are these
independent?
Suppose we toss two dice. Let E = Sum is 7,F = First die is 4. Are these
independent?

Dr. Erhun Kundakcioglu (Ozyegin University) IE532 Stochastic Models 17 / 148
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Suppose we toss two dice. Let E = Sum is 7,F = First die is 4. Are these
independent?
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Introduction and Review of Probability Bayes’ Theorem

Bayes’ Formula

Consider two events E and F

E = EF ∪ EF c

P(E ) = P(EF ) + P(EF c), as these two are mutually exclusive

P(E ) = P(E |F )P(F ) + P(E |F c)P(F c), using conditional probability formula

Note that the number of conditions are not necessarily two. i.e.,

P(E ) = P(E |F1)P(F1) + P(E |F2)P(F2) + . . .+ P(E |Fn)P(Fn)

if Fi ’s are mutually exclusive and their union is the sample set.
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Introduction and Review of Probability Bayes’ Theorem

Bayes’ Formula

This formula can be used to swap the order of conditions!

P(H|W ) = P(HW )
P(W )

= P(W |H)P(H)
P(W )

= P(W |H)P(H)
P(W |H)P(H) + P(W |Hc)P(Hc)
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Introduction and Review of Probability Bayes’ Theorem

Bayes’ Formula

Example: Consider two urns. The first contains two white and seven black balls,
and the second contains five white and six black balls. We flip a fair coin and then
draw a ball from the first urn or the second urn depending on whether the
outcome was heads or tails. What is the conditional probability that the outcome
of the toss was heads given that a white ball was selected?
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Introduction and Review of Probability Bayes’ Theorem

Bayes’ Formula

Example: Suppose that 5 percent of men and 0.25 percent of women are
color-blind. A color-blind person is chosen at random. What is the probability of
this person being male? Assume that there are an equal number of males and
females.
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Introduction and Review of Probability Homework Assignment

Homework Assignment

1 Atiba and Ozan go shooting together. Both shoot at a target
at the same time. Suppose Atiba hits the target with probability 0.9, whereas
Ozan, independently, hits the target with probability 0.2.
a. Given that exactly one of them hits the target, what is the probability that it

was Ozan?
b. Given that the target is hit, what is the probability that Ozan hits it?

2 Urn 1 has 1 white and 3 black balls. Urn 2 has 3 white and 8 black balls. We
flip a fair coin. If the outcome is heads, then a ball from urn 1 is selected,
while if the outcome is tails, then a ball from urn 2 is selected. Suppose that
a white ball is selected. What is the probability that the coin landed tails?

3 A Russian gangster kidnaps you. He puts two bullets in consecutive order in
an empty six-round revolver, spins it, points it at your head and shoots.
Turns out that it was empty, you’re still alive. He then asks you, do you want
me to spin it again and fire or pull the trigger again. For each option, what is
the probability that you’ll be shot?
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Introduction and Review of Probability Homework Assignment

Homework Assignment

4 Three prisoners are informed by their jailer that one of them has been chosen
at random to be executed, and the other two are to be freed. Prisoner A asks
the jailer to tell him privately which of his fellow prisoners will be set free,
claiming that there would be no harm in divulging this information, since he
already knows that at least one will go free. The jailer refuses to answer this
question, pointing out that if A knew which of his fellows were to be set free,
then his own probability of being executed would rise from 1/3 to 1/2, since
he would then be one of two prisoners. What do you think of the jailer’s
reasoning?

5 Prove that P(A|B) = P(A|BC)P(C |B) + P(A|BC c)P(C c |B)
6 An urn contains b black balls and r red balls. One of the balls is drawn at

random, but when it is put back in the urn c additional balls of the same
color are put in with it. Now suppose that we draw another ball. Show that
the probability that the first ball drawn was black given that the second ball
drawn was red is b/(b + r + c).
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Introduction and Review of Probability Random Variables

Random Variables

Real-valued functions defined on the sample space are known as random
variables.

Two types of random variables
Discrete random variables (take on either a finite or a countable number of
possible values)
Continuous random variables (take on a continuum of possible values)

The cumulative distribution function (cdf) F (·) of the random variable X is
defined for any real number b,−∞ < b <∞, by F (b) = P{X ≤ b}

Properties of cdf:
F (b) is a nondecreasing function of b,
limb→∞ F (b) = F (∞) = 1,
limb→−∞ F (b) = F (−∞) = 0.
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Introduction and Review of Probability Random Variables

Discrete Random Variables
For a discrete random variable X , we define the probability mass function p(a) of
X by

p(a) = P{X = a}

Note that usually upper-case letters denote random variables, whereas lower-case
letters denote parameters.

We have
∞∑

i=1
p(xi ) = 1

The relationship between the pmf and cdf is

F (a) =
∑

xi :xi<=a
p(xi )

Let’s consider the example of die roll. How would you define the pmf and cdf?
What if we tossed a fair coin?
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Introduction and Review of Probability Random Variables

Continuous Random Variables
We say that X is a continuous random variable if there exists a nonnegative
function f (x), defined for all real x ∈ (−∞,∞), having the property that for any
set B of real numbers

P{X ∈ B} =
∫

B
f (x)dx

The function f (x) is called the probability density function of the random variable
X .

This immediately translates into

P{a ≤ X ≤ b} =
∫ b

a
f (x)dx

We also have ∫ ∞
−∞

f (x)dx = P{X ∈ (−∞,∞)} = 1

P{X = a} =?
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Introduction and Review of Probability Random Variables

Continuous Random Variables (cont’d)

The relationship between the pdf and cdf is expressed by

F (a) = P{X ∈ (−∞, a]} =
∫ a

−∞
f (x)dx

Differentiating both sides
d
daF (a) = f (a)

The density is the derivative of the cumulative distribution function. A somewhat
more intuitive interpretation may be obtained using

P{a ≤ X ≤ b} =
∫ b

a
f (x)dx

P{a − ε

2 ≤ X ≤ a + ε

2} =
∫ a+ε/2

a−ε/2
f (x)dx ≈ εf (a)
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Introduction and Review of Probability Random Variables

Some Random Variables

Discrete Random Variables
I Bernoulli Random Variable (must know)
I Binomial Random Variable (must know, sum of iid Bernoulli RVs)
I Geometric Random Variable (must know, memoryless)
I Poisson Random Variable (must know - will be explored further, counting

exponential interarrival times)

Continuous Random Variables
I Uniform Random Variable (must know)
I Exponential Random Variable (must know - will be explored further,

memoryless)
I Gamma Random Variable (only know sum of iid exponential RVs)
I Normal Random Variable (know the shape)
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Introduction and Review of Probability Random Variables

Expectation of a Random Variable

Discrete Case

E [X ] =
∑

x :p(x)>0

xp(x)

Continuous Case

E [X ] =
∫ ∞
−∞

xf (x)dx

Find the expectation of a geometric random variable.

Find the expectation of a uniform random variable.
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Introduction and Review of Probability Random Variables

Expectation of a Function of a Random Variable

Discrete Case

E [g(X )] =
∑

x :p(x)>0

g(x)p(x)

Continuous Case

E [g(X )] =
∫ ∞
−∞

g(x)f (x)dx

Let X ∼ UNIF(0, 2). What is E [X 3]?
Consider a fair die and let X denote the outcome. What is E [X 2]?

Corollary
If a and b are constants, then E [aX + b] = aE [X ] + b.

Proof: ?
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Introduction and Review of Probability Random Variables

Moment
The expected value of a random variable X , E [X ], is also referred to as the mean
or the first moment of X . The quantity E [X n], n ≥ 1, is called the n-th moment
of X .

The moment generating function Φ(t) of the random variable X is defined for all
values t by

Φ(t) = E [etX ] =
{ ∑

x etxp(x) if X is discrete∫∞
−∞ etx f (x)dx if X is continuous

Use and uniqueness of MGFs...

If X and Y are independent

ΦX+Y (t) = E [et(X+Y )] = E [etX ]E [etY ] = ΦX (t)ΦY (t)

More on that (expectation of product is product of expectation when
independent) later
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Introduction and Review of Probability Random Variables

Variance of a Random Variable

Another quantity of interest is the variance of a random variable X , denoted by
Var(X ) can be calculated as

Var(X ) = E (X − E [X ])2

We can use expectation of function of a random variable with this formula to
obtain the variance.

Alternative variance formula:

Var(X ) = E (X 2)− E [X ]2

Proof? We can also use MGF to obtain E (X ) and E (X 2) and the variance.

Let X ∼ UNIF(0, 2). What is Var [X ]?
Consider a fair die and let X denote the outcome. What is Var [X ]?
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Introduction and Review of Probability Random Variables

Discrete Random Variables - Summary
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Introduction and Review of Probability Random Variables

Continuous Random Variables - Summary
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Introduction and Review of Probability Random Variables

Jointly Distributed Random Variables

For any two random variables X and Y , the joint cumulative probability
distribution function of X and Y by

F (a, b) = P{X ≤ a,Y ≤ b},−∞ < a, b <∞

FX (a) = P{X ≤ a}
= P{X ≤ a,Y <∞}
= F (a,∞)
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Introduction and Review of Probability Random Variables

Jointly Distributed Random Variables

In the case where X and Y are both discrete random variables, the joint pmf of X
and Y is

p(x , y) = P{X = x ,Y = y}

The probability mass function of X may be obtained from p(x , y) by

pX (x) =
∑

y :p(x ,y)>0

p(x , y)
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Introduction and Review of Probability Random Variables

Jointly Distributed Random Variables

In the case where X and Y are both continuous random variables, the joint pdf of
X and Y is

P{X ∈ A,Y ∈ B} =
∫

B

∫
A
f (x , y)dxdy

The probability density function of X may be obtained from f (x , y) as

fX (x) =
∫ ∞
−∞

f (x , y)dy

because

P{X ∈ A} = P{X ∈ A,Y ∈ (−∞,∞)} =
∫ ∞
−∞

∫
A
f (x , y)dxdy =

∫
A
fX (x)dx
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Introduction and Review of Probability Random Variables

Properties of Jointly Distributed Random Variables

d2

dadb F (a, b)

= d2

dadb

∫ a

−∞

∫ b

−∞
f (x , y)dydx = f (a, b)

E [g(X ,Y )] =
{ ∑

y
∑

x g(x , y)p(x , y) in discrete case∫∞
−∞

∫∞
−∞ g(x , y)f (x , y)dxdy in continuous case

E [aX + bY ] = aE [X ] + bE [Y ]

Note that no independence is needed for this result to hold.

Ex: At a party N men throw their hats into the center of a room. The hats are
mixed up and each man randomly selects one. Find the expected number of men
who select their own hats.
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Introduction and Review of Probability Random Variables

Independence
The random variables X and Y are said to be independent if, for all a, b,

P{X ≤ a,Y ≤ b} = P{X ≤ a}P{Y ≤ b}

Random variables X and Y are independent if, for all a and b, the events
Ea = {X ≤ a} and Fb = {Y ≤ b} are independent.

F (a, b) = FX (a)FY (b), for all a, b
When X and Y are jointly discrete,

p(x , y) = pX (x)pY (y)

When X and Y are jointly continuous,

f (x , y) = fX (x)fY (y)
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Introduction and Review of Probability Random Variables

Independence (cont’d)

If X and Y are independent, then for any functions h and g

E [g(X )h(Y )] = E [g(X )]E [h(Y )]

Note that if X and Y are independent, then Cov(X ,Y ) = 0.

Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])]
= E [XY − YE [X ]− XE [Y ] + E [X ]E [Y ]]
= E [XY ]− E [Y ]E [X ]− E [X ]E [Y ] + E [X ]E [Y ]
= E [XY ]− E [X ]E [Y ]
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Introduction and Review of Probability Limit Theorems

Markov’s Inequality

If X is a random variable that takes only nonnegative values, then for any value
a > 0,

P{X ≥ a} ≤ E [X ]
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Introduction and Review of Probability Limit Theorems

Chebyshev’s Inequality

If X is a random variable with mean µ and variance σ2, then for any value k > 0,

P{|X − µ| ≥ k} ≤ σ2

k2
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Introduction and Review of Probability Limit Theorems

Strong Law of Large Numbers

Let X1,X2, . . . be a sequence of independent random variables having a common
distribution, and let E [Xi ] = µ. Then, with probability 1,

X1 + X2 + · · ·+ Xn
n → µ as n→∞
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Introduction and Review of Probability Limit Theorems

Central Limit Theorem

Let X1,X2, . . . be a sequence of independent, identically distributed random
variables, each with mean µ and variance σ2. Then the distribution of

X1 + X2 + · · ·+ Xn − nµ
σ
√
n

tends to the standard normal as n→∞. That is,

P
{
X1 + X2 + · · ·+ Xn − nµ

σ
√
n

≤ a
}
→ 1√

2π

∫ a

−∞
e−x2/2dx

as n→∞.
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Introduction and Review of Probability Homework Assignment

Homework Assignment

1 An airline knows that 5 percent of the people making reservations on a
certain flight will not show up. Consequently, their policy is to sell 52 tickets
for a flight that can hold only 50 passengers. What is the probability that
there will be a seat available for every passenger who shows up?

2 A fair coin is independently flipped n times, k times by A and n − k times by
B. Show that the probability that A and B flip the same number of heads is
equal to the probability that there are a total of k heads.

3 If the density function of X equals f (x) =
{

ce−2x 0 < x <∞
0 x < 0

Find c. What is P{X > 2}?
4 Suppose that the joint probability density of X and Y is

fX ,Y (x , y) = λ2e−λy , 0 < x < y <∞. Find the density of X. Find the density
of Y.
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Introduction and Review of Probability Homework Assignment

Homework Assignment

5 Let X represent the difference between the number of heads and the number
of tails obtained when a fair coin is tossed n times. Define the probability
mass function for X .

6 Prove that E [X 2] ≥ (E [X ])2. When do we have equality?
7 Consider n independent flips of a coin having probability p of landing heads.

Say a changeover occurs whenever an outcome differs from the one preceding
it. For instance, if the results of the flips are H H T H T H H T, then there
are a total of five changeovers. If p = 1/2, what is the probability there are k
changeovers? What if p < 1/2? What is the probability there are k
changeovers in n consecutive die rolls?

8 Let c be a constant. Show that Var(cX ) = c2Var(X ) and
Var(c + X ) = Var(X ).
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Conditional Probability and Expectation

1 Introduction and Review of Probability

2 Conditional Probability and Expectation
Basics
Computing Expectations by Conditioning
Computing Probabilities by Conditioning
Homework Assignment

3 Discrete Time Markov Chains

4 Markov Decision Processes

5 Continuous Time Markov Chains

6 Queueing Theory
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Conditional Probability and Expectation Basics

Conditional Probability and Expectation - Discrete

Consider discrete random variables X and Y

Conditional Probability Mass Function

pX |Y (x |y) = P{X = x |Y = y} = P{X = x ,Y = y}
P{Y = y} = pX ,Y (x , y)

pY (y)

for all values of y such that P{Y = y} > 0.

Marginal Probability Mass Function of Y

pY (y) =
∑

x
p(x , y)

Conditional Expectation

E (X |Y = y) =
∑

x
xP{X = x |Y = y} =

∑
x

xpX |Y (x |y)

If X is independent of Y , then pX |Y (x |y) = P(X = x)
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Conditional Probability and Expectation Basics

Conditional Probability and Expectation - Discrete

Example
There are n components. On a rainy day, component i will function with
probability p; on a sunny day, component i will function with probability q for
i = 1, · · · n. It will rain tomorrow with probability α. Calculate the conditional
expected number of components given that it will rain tomorrow.

Example
Suppose that p(x , y), the joint probability mass function of X and Y , is given by
p(1, 1) = 0.5, p(1, 2) = 0.1, p(2, 1) = 0.1, p(2, 2) = 0.3. Calculate the conditional
probability mass function of X given that Y = 1.

Example
Suppose X1 and X2 are independent binomial random variables with respective
parameters (n1, p) and (n2, p), calculate the conditional probability mass function
of X1 given that X1 + X2 = m. (aka hypergeometric distribution)
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Conditional Probability and Expectation Basics

Conditional Probability and Expectation - Continuous

Consider continuous random variables X and Y

Conditional Probability Density Function

fX |Y (x |y)

= fX ,Y (x , y)
fY (y)

Marginal Probability Function of Y

fY (y) =
∫ ∞
−∞

fX ,Y (x , y)dx

Conditional Expectation

E (X |Y = y) =
∫ ∞
−∞

xfx |y (x |y)dx
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Conditional Probability and Expectation Basics

Conditional Probability and Expectation - Continuous

Example

f (x , y) =
{
cxy(2− x − y), 0 < x < 1, 0 < y < 1

0, otherwise
Calculate E (X |Y = y) where 0 < y < 1.

Prove c = 6 first.

Example

f (x , y) =
{
4y(x − y)e−(x+y), 0 < x < 1, 0 ≤ y ≤ x

0, otherwise
Calculate E (X |Y = y).
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Conditional Probability and Expectation Computing Expectations by Conditioning

Computing Expectations by Conditioning

E [X ] = E [E [X |Y ]]

Discrete Case
E (X ) =

∑
k

E (X |Y = k)P(Y = k)

Continuous Case

E (X ) =
∫ ∞
−∞

E (X |Y = y)fY (y)dy

This can be derived from expectation of function of a random variable. Yet, the
proof in the book is quite nice.
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Conditional Probability and Expectation Computing Expectations by Conditioning

Computing Expectations by Conditioning
Example
Suppose that the expected number of accidents per week at an industrial plant is
four. Suppose also that the numbers of workers injured in each accident are
independent random variables with a common mean of 2. Assume also that the
number of workers injured in each accident is independent of the number of
accidents that occur. What is the expected number of injuries during a week?

Example
X ∼ Geometric(p). E (X ) =?

Example
Suppose we perform independent trials, each with success probability p. The
experiment is performed until there are k consecutive successes. Calculate
E (Number of trials needed).

Example
Suppose we perform independent trials, each with success probability p. The
experiment is performed until there are k successes. Calculate
E (Number of trials needed).
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Conditional Probability and Expectation Computing Expectations by Conditioning

Computing Expectations by Conditioning

Example
Suppose that a die is rolled until we observe a 6-4 (in that order). What is the
expected number of rolls needed?

Example
Suppose that a die is rolled until we observe a 6-4 (in that order). What is the
expected number of 6s rolled?

Additional Homework Question
Suppose that a die is rolled until we observe a 6-4 (in that order). What is the
expected number of 4s rolled?
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Conditional Probability and Expectation Computing Expectations by Conditioning

Computing Variance by Conditioning

Var(X ) = E (X 2)− E (X )2

is to be used where E (X ) and E (X 2) can be computed using conditioning.

Example
X ∼ Geometric(p). Prove Var(X ) = 1−p

p2 .

Var(X ) = E [Var [X |Y ]] + Var [E [X |Y ]]
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Conditional Probability and Expectation Computing Probabilities by Conditioning

Computing Probabilities by Conditioning

Discrete Case
P(E ) =

∑
y

P(E |Y = y)P(Y = y)

Note that this is what you already used in Bayes’ Theorem.

Continuous Case
P(E ) =

∫ ∞
−∞

P(E |Y = y)fY (y)dy
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Conditional Probability and Expectation Computing Probabilities by Conditioning

Computing Probabilities by Conditioning

Example
Probability density functions of X and Y are fX (x) and fY (y) respectively.
Calculate P(X < Y ).

Example
X ∼ UNIFORM(0,T ), T > 1 and Y ∼ BERNOULLI(p). What is P(X > Y ) =?

Example
Xm is the time (in hours) that Mark goes to restroom. Xm ∼ UNIFORM(0, 1)
Xd is the time (in hours) that Dean goes to restroom. Xd ∼ UNIFORM(0.5, 2.5)
They both stayed for a duration of 15 minutes. What is the probability that they
see each other?

Example
X ∼ UNIFORM(0, 1) and Y ∼ UNIFORM(0, 1). What is the distribution of
X + Y ?

Read: Polya’s Urn Model and Uniform Priors.
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Conditional Probability and Expectation Computing Probabilities by Conditioning

Computing Probabilities by Conditioning

Example Suppose that the number of people who visit a yoga studio each day is
a Poisson random variable with mean λ. Suppose further that each person who
visits is, independently, female with probability p or male with probability 1− p.
Find the joint probability that exactly n women and m men visit the academy
today.
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Conditional Probability and Expectation Homework Assignment

Homework Assignment

1 The joint density of X and Y is given by
f (x , y) = (e−x/ye−y )/y , 0 < x <∞, 0 < y <∞. Find E [X |Y = y ].

2 A coin that comes up heads with probability p is continually flipped until the
pattern T, T, H appears. (That is, you stop flipping when the most recent
flip lands heads, and the two immediately preceding it lands tails.) Let X
denote the number of flips made, and find E [X ]. Let Y denote the number
of heads observed, and find E [Y ].

3 Two players take turns shooting at a target, with each shot by player i hitting
the target with probability pi , i = 1, 2. Shooting ends when two consecutive
shots hit the target. Let µi denote the mean number of shots taken when
player i shoots first, i = 1, 2. Find µ1 and µ2.

4 X ∼ UNIFORM(0, 1) and Y ∼ UNIFORM(0, 2). What is the distribution of
X + Y ?
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Conditional Probability and Expectation Homework Assignment

Homework Assignment

5 A basketball player has a rating of 1 to k, where the probability of i rating is
pi with

∑k
i=1 pi = 1. The number of points scored by an i rating player is

Poisson distributed with rate λi , i = 1, . . . , k. Given that the player scored n
points in her first game, what is the expected points she will score in her
second game?

6 Independent trials, each resulting in success with probability p, are
performed. Find the expected number of trials needed for there to have been
both at least n successes and at least m failures. (Hint: Condition on the
result of the first n + m trials.)
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Discrete Time Markov Chains

1 Introduction and Review of Probability

2 Conditional Probability and Expectation

3 Discrete Time Markov Chains
Chapman-Kolmogorov Equations
Classification of States
Long-run Properties
First Passage Times
Expected Time Spent in States
Absorbing Chains
Mean Time Spent in Transient States
Time Reversible Markov Chains
Homework Assignment

4 Markov Decision Processes

5 Continuous Time Markov Chains
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Discrete Time Markov Chains

Stochastic Processes

Two important types of stochastic processes we will see are
Markov chains
Queueing models

A stochastic process {X (t), t ∈ T} is a collection of random variables
For each t ∈ T ,X (t) is a random variable that takes a value of a system
characteristic at time t
Index t often denotes time, set T is called the index set of the process
X (t) is the state of the process at time t

E.g., number of customers that have entered a supermarket by time t
total amount of sales that have been recorded in the market by time t

When T is a countable set, the stochastic process is said to be a discrete-time
process
When T is an interval of the real line, the stochastic process is said to be a
continuous-time process
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Discrete Time Markov Chains

State Space

We will use X (t) and Xt interchangeably.

Finite state space: If Xt may only assume a finite number of values, then the
stochastic process is said to have a finite state space.
Number of people that can be packed in a car.
Infinite state space: If Xt may take an infinite number of different values,
then the stochastic process is said to have an infinite state space.
Fuel level of a car.
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Discrete Time Markov Chains

Examples

Indicate if the following are discrete or continuous time and if state space is finite
or infinite.

Suppose weather changes from day to day. If the weather is dry today, then
it will be dry tomorrow with probability 0.8. If it is raining today, then it will
be rainy tomorrow with probability 0.4. Starting on some initial day (labeled
as zero), the weather is observed on each day t = 0, 1, . . ..
At t = 0, we have $2. At times t = 1, 2, . . . we play a game in which we bet
$1. With probability p we win the game (our fortune increases by $1) and
with probability 1− p we lose the game (our fortune decreases by $1).
The height of a person in centimeters.
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Discrete Time Markov Chains

Examples

A camera store stocks a particular model to be ordered weekly. Let Dt be the
demand in week t. Demand is observed during weekdays only. Note that Dt
includes lost sales if there is no camera in stock. Inventory management
policy is the following: Each Saturday the owner places an order of 3 units if
no camera is left in stock. Otherwise, no order is placed. Orders arrive
Monday morning before the store is opened. We are interested in modeling
the stock level of the store over time.

I State of the system
Xt : number of cameras in stock Sunday morning of week t (0, 1, 2, 3)

I relationship between Xt ,Xt+1

Xt+1 =

{
max{Xt − Dt+1, 0} if Xt ≥ 1

max{3− Dt+1, 0} if Xt = 0
I What if we are interested in the number of lost customers (e.g., to incur a

penalty per lost customer) as well?
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Discrete Time Markov Chains

Markovian Property

A discrete time stochastic process Xt is said to have the Markovian property if

P(Xt+1 = m|Xt = n,Xt−1,Xt−2,Xt−3, . . .) = P(Xt+1 = m|Xt = n)

In other words, the next state depends only on the current state, and is
independent from all past states. This holds for all points in time.
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Discrete Time Markov Chains

Markovian Property

Example: Suppose weather changes from day to day. If the weather is dry today,
then it will be dry tomorrow with probability 0.8. If it is raining today, then it will
be rainy tomorrow with probability 0.4. Starting on some initial day (labeled as
zero), the weather is observed on each day t = 0, 1, . . ..

What is the probability that it will rain on 11th, given that it rained on 10th, dry
on 9th, dry on 8th?
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Discrete Time Markov Chains

Markov Chains

A discrete time stochastic process with the Markovian property is called a discrete
time Markov chain.

The conditional probabilities P(Xt+1 = j |Xt = i) are called the one-step transition
probabilities.
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Discrete Time Markov Chains

Stationarity

If, in addition, for each i and j ,

P(Xt+1 = j |Xt = i) = P(X1 = j |X0 = i)

for all t = 0, 1, 2, . . ., then we say that the (one-step) transition probabilities are
stationary.
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Discrete Time Markov Chains

Discrete Time Markov Chains

Example: Gambler’s Ruin Problem
At t = 0 we have $2
At t = 1, 2, . . . we play a game in which we bet $1
with probability of p we win the game (our fortune increases by $1)
with probability of 1− p we lose the game (our fortune decreases by $1)
we quit the game if our capital is increased to $4 or drops to $0

Show the one-step transition probability matrix. Draw the states and show the
transitions.
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Discrete Time Markov Chains

Discrete Time Markov Chains

n-step transition probability P(n)
ij :

conditional probability that system will
be in state j after exactly n steps (time steps),
given that it starts in state i at any time t

P(at j in step 25|at i in step 20) = P5
ij

Pij = P(Xt+1 = j |Xt = i) = P(X1 = j |X0 = i)

P(n)
ij = P(Xt+n = j |Xt = i) = P(Xn = j |X0 = i)

Question: Prove that n-step transition probabilities are stationary if one-step
transition probabilities are stationarity.
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Discrete Time Markov Chains

Discrete Time Markov Chains

n-step transition probabilities

P(n) =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
P(n)
00 P(n)

01 . . . P(n)
0M

...
...

P(n)
M0 . . . . . . P(n)

MM

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣→ n-step transition probability matrix

How can we compute P(2) using the one-step transition probabilities?
Example:
Suppose weather changes from day to day. If the weather is dry today, then it will
be dry tomorrow with probability 0.8. If it is raining today, then it will be rainy
tomorrow with probability 0.4. Starting on some initial day (labeled as zero), the
weather is observed on each day t = 0, 1, . . .. If it currently rainy, what is the
probability of rain two days from now?
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be dry tomorrow with probability 0.8. If it is raining today, then it will be rainy
tomorrow with probability 0.4. Starting on some initial day (labeled as zero), the
weather is observed on each day t = 0, 1, . . .. If it currently rainy, what is the
probability of rain two days from now?
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Discrete Time Markov Chains Chapman-Kolmogorov Equations

Chapman-Kolmogorov Equations

P(2)
ij =

M∑
k=0

P(1)
ik P(1)

kj → generic form of a matrix

P(n)
ij =

M∑
k=0

P(m)
ik P(n−m)

kj , ∀i , j , ∀m, n
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Discrete Time Markov Chains Classification of States

Classification of States

two states i and j

path from i to j is a sequence of transitions
state j is said to be accessible from state i if P(n)

ij > 0 for some n ≥ 0
I a path exist from i to j
I it is possible for the system to eventually enter state j starting from state i

lim
n→∞

n∑
l=1

P(l)
ij = 1
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Discrete Time Markov Chains Classification of States

Classification of States

if i is accessible from j and j is accessible from i , then i and j are said to
communicate

I any state communicates with itself

P(0)
ii = P(X0 = i |X0 = i) = 1

I if state i communicates with state j, then state j communicates with state i
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Discrete Time Markov Chains Classification of States

Classification of States

If state i communicates with state j , and state j communicates with state k, then
state i communicates with state k.

i

j

k

Prove this statement.
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Discrete Time Markov Chains Classification of States

Classification of States

Communication
communication partitions states into disjoint classes

I a class may be a single state
if there is only one class, i.e., if all states communicate, then the Markov
chain is said to be irreducible.

E.g., are the weather and gambler’s ruin MCs irreducible?
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Discrete Time Markov Chains Classification of States

Classification of States

Transient/Recurrent States:

for any state i we let
fi : probability that starting in state i , the process will ever reenter state i

fi = 1→ state is recurrent
fi < 1→ state is transient

As there is a positive probability that the process will never return to a transient
state, a transient state will be visited only a finite number of times.
After leaving a recurrent state, the process will definitely return to this state
again, i.e., state will be visited infinitely many times if it is entered once.

Recurrency and transiency are class properties.

E.g., which states (classes) are recurrent/transient in the weather and gambler’s
ruin MCs?
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Discrete Time Markov Chains Classification of States

Classification of States

A state is said to be absorbing if, upon entering this state, the process will never
leave this state. Thus, for an absorbing state i , Pii = 1.

Prove the following:

State i transient iff ∃ state j accessible from i , where i is not accessible from
j .

In a finite-state Markov Chain, not all states can be transient.
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Discrete Time Markov Chains Classification of States

Classification of States

Periodicity

State i is said to have period d if Pn
ii = 0 whenever n is not divisible by d and d is

the largest integer with this property.

a state with period 1 is said to be aperiodic
periodicity is a class property

E.g., what is the period for each state (class) in the weather and gambler’s ruin
MCs?
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Discrete Time Markov Chains Classification of States

Classification of States

Ergodicity

In a finite-state MC, recurrent states that are aperiodic are called ergodic
A MC is ergodic if all states are ergodic
This is a key property for the existence of steady-state probabilities
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Discrete Time Markov Chains Long-run Properties

Long-run Properties

Limiting Probabilities

If n is large enough, the probability that the system is in a particular state
after n transitions does not depend on the initial state.
For any irreducible, ergodic, finite-state MC

lim
n→∞

P(n)
ij

exists and is independent of i
What would you observe if you find P(n) where n is large for the weather example?
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Discrete Time Markov Chains Long-run Properties

Limiting Probabilities

Furthermore,
lim

n→∞
P(n)

ij = πj > 0

where πj ’s uniquely satisfy the following steady-state equation

πj =
M∑

i=0
πiPij , j = 0, . . . ,M

M∑
j=0

πj = 1

How many equations/variables are there in this system?
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Discrete Time Markov Chains Long-run Properties

Limiting Probabilities

Example:

An individual possesses an umbrella that he employs in going from his home to
office, and vice versa. If he is at home (the office) at the beginning (end) of a day
and it is raining, then he will take his umbrella with him to the office (home),
provided there is one to be taken. If it is not raining, then he never takes an
umbrella. Assume that, independent of the past, it rains at the beginning (end) of
a day with probability p.

Define a Markov chain, which will help us to determine the proportion of time
that our man gets wet. (Note: He gets wet if it is raining, and all umbrellas are at
his other location.)

What if he has 3 umbrellas?
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Discrete Time Markov Chains Long-run Properties

Interpretation of Limiting Probabilities

1. Steady-state probabilities

The probability of finding the process in a certain state, say j , after a large
number of transitions converges to the value πj , independent of the distribution of
the initial state
Note that this does not mean that the Markov chain settles into a state. The
process continues to make transitions according to the one-step transition
probability matrix.
Equivalently, we can state that the long-run proportion of time that the process
will be in state j is πj .

2. Stationary probabilities

If P(X0 = j) = πj ∀j , then the probability of finding the process in state j after
n = 1, 2, . . . transition is also πj
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Discrete Time Markov Chains Long-run Properties

Interpretation of Limiting Probabilities

3. Equilibrium probabilities

i j k

probability of entering state j = probability of leaving state j

M∑
i=0
i 6=j

πiPij = πj(1− Pjj)

M∑
i=0

πiPij = πj ∀j

M∑
i=0

πj = 1
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Discrete Time Markov Chains Long-run Properties

Limiting Probabilities

We require on irreducible, ergodic, finite-state MC for computing the limiting
probabilities.

What if we don’t have an irreducible MC but have more than one recurrent
class?

Example:

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
0.4 0.6 0 0 0
0.5 0.5 0 0 0
0 0 0 0 1
0 0 0.3 0.7 0
0 0 0 0.8 0.2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
What if the states are not aperiodic?

lim
n→∞

P(n)
ij does not exist

Example: If the process starts at 1, then it will be in state 1 at times 0, 2, 4, . . .
and in state 2 at times 1, 3, 5, . . . πj ’s can be found but it should be interpreted
only as the long-run proportion of time the process spends in state j
i.e., limn→∞

1
n
∑n

k=1 P
(k)
ij = πj always exists
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Discrete Time Markov Chains Long-run Properties

Expected Average Cost Per Unit Time
Suppose that a cost (or another penalty or reward) C(Xt) is incurred when the
process is in state Xt at time t = 0, 1, . . .

Assume that C(Xt) is independent of time and note that it is a random variable
that takes on the values C(0),C(1), . . . ,C(M).
The expected average cost over the first n periods is given by

E ( 1n

n∑
k=1

C(Xt))

The long-run expected average cost is

lim
n→∞

E ( 1n

n∑
t=1

C(Xt)) = lim
n→∞

1
n

n∑
t=1

M∑
j=0

P(k)
ij C(j)

=
M∑

j=0
C(j) lim

n→∞

1
n

n∑
k=1

P(k)
ij =

M∑
j=0

C(j)πj
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Discrete Time Markov Chains Long-run Properties

Expected Average Cost Per Unit Time

Example: Assume that you receive $1 each time you visit state k. What is your
long-run expected reward per unit time?

Example: Suppose that whether or not it rains today depends on previous
weather conditions through the last two days. Specifically, suppose that if it has
rained for the past two days, then it will rain tomorrow with probability 3/4; if it
rained today but not yesterday, then it will rain tomorrow with probability 1/2; if
it rained yesterday but not today, then it will rain tomorrow with probability 1/3;
if it has not rained in the past two days, then it will rain tomorrow with probability
1/4. Each morning it rains, you spend $4 for your Caffè Latte. If it doesn’t rain,
you spend $3 for your orange juice instead. What is your average monthly expense
on your morning beverage?
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Discrete Time Markov Chains First Passage Times

First Passage Times

What is the expected number of transitions is going from state i to state j
for the first time?

→ expected first passage time
What is the expected number of transitions is going from state i back to
state i for the first time? → expected recurrence time
X0 = 3,X1 = 2,X2 = 1,X3 = 0,X4 = 3,X5 = 1

I First passage time from 3 to 0? 3.
I First passage time from 3 to 1? 2 and 1.
I Recurrence time of 3? 4.
→ Note that expected first passage and recurrence times are RVs
→ distributions depend on transition probabilities
Let f (n)

ij denote the probability that the first passage time from i to j is n

Condition on the first event, compute recursively


f (1)
ij = Pij

f (2)
ij =

∑
k 6= j Pik f (1)

kj

f (n)
ij =

∑
k 6= j Pik f (n−1)

kj
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Discrete Time Markov Chains First Passage Times

First Passage Times

If
∑∞

n=1 f
(n)

ij = 1

f (n)
ij , n = 1, 2, . . . is the pmf of the first passage time from i to j

If
∑∞

n=1 f
(n)

ij < 1
there is a positive probability that the process will never reach state j starting
from state i and we do not have a probability distribution

E [first passage time from i to j] = µij =

∞, if
∑∞

n=1 f
(n)

ij < 1∑∞
n=1 nf

(n)
ij , if

∑∞
n=1 f

(n)
ij = 1

In the latter case, we can compute the expected first passage times by
conditioning on the first event given that the process starts in state i .
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First Passage Times

If
∑∞

n=1 f
(n)

ij = 1, we have,

µij = Pij × 1 +
∑

k 6= j Pik(1 + µkj)
=
∑

k P ik +
∑

k 6= j Pik(µkj)
= 1 +

∑
k 6=j Pik(µkj)

Example:
Given the one step transition matrix for states 0 to 3 for the inventory example as

P =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1/10 2/10 4/10 3/10
2/3 1/3 0 0
1/4 3/8 3/8 0
1/10 2/10 4/10 3/10

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ , find the expected time until we place an order

given that we start with 3 units.
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Discrete Time Markov Chains First Passage Times

Expected Recurrence Times

µii : expected number of transitions until the process returns to the initial state i

This expectation can readily be calculated from the long-run proportion of time
the process spends in state i

µii = 1
πi

∀i = 0, . . . ,M

Example: In the inventory example, given that an order is placed this week, how
many weeks does it take for us on average to place the next order?
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Discrete Time Markov Chains Expected Time Spent in States

Expected Time Spent in a State

In the inventory example, given that an order is placed this week, how many
“consecutive” weeks do we expect to place orders?

Given that the process enters state 0, what is the expected number of
transitions that the process stays in 0?

Jumping out of state 0 is geometrically distributed with success probability
1− P00. The question asks the expected time until the first success. Thus,
the answer is 1/(1− P00)

Note that this figure will always be greater than or equal to 1 as the process
already enters the state, thus will definitely spend at least 1 time unit.
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Discrete Time Markov Chains Expected Time Spent in States

Expected Time Spent in Set of States

Example:
Sales can be in one of the 4 states, 0 being the best, 3 the worst.

P =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1/4 1/4 1/2 0
0 1/4 1/2 1/4

1/4 1/4 1/4 1/4
1/4 1/4 0 1/2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

Assume sales are considered "FAST" when states 0 and 1 are visited, and
"SLOW" when in 2 and 3.

Determine
1 the rate at which sales fo from FAST to SLOW (rate of economic

breakdowns)
2 the average length of time sales remain SLOW when they go SLOW
3 the average length of the process remains FAST when it goes FAST
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Discrete Time Markov Chains Absorbing Chains

Absorbing Chains

Consider a Markov chain in which some states are absorbing, and the rest of
the states are transient. Such a chain is called an absorbing chain.
Example?

If we begin in a transient state, then we are sure that we will eventually end
up in one of the absorbing states.
Two questions:

I If a chain begins in a given transient state, what is probability that we end up
in each absorbing state?

I If a chain begins in a given transient state, and before we reach an absorbing
state, what is the expected number of times that each state will be entered?
How many periods do we expect to spend in a given transient state before
absorption takes place?

If k is an absorbing state and the process starts in state i , the probability of ever
going into state k is called probability of absorption fik into state k given that the
system starts in state i .
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Discrete Time Markov Chains Absorbing Chains

Absorption Probabilities
There may be several absorbing states in the Markov chain.

These probabilities can be computed by conditioning on the first event given that
the process starts in state i .
Absorption Probabilities:

fik =
M∑

j=0
Pij fjk ∀i = 0, . . . ,M

fkk = 1 for any absorbing state k

fik = 0 if i is absorbing and i 6= k

Example: 2 players A and B have $2 each. They bet $1 at a time and they keep
playing until one of them goes broke. A wins each bet with probability 1/3. What
is the probability that player A loses the game?
i.e., Suppose Xt denotes the money on hand for player A. What is f02?
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Discrete Time Markov Chains Absorbing Chains

Useful Equations for Absorbing Chains
Suppose that we partition the states into transient and recurrent (absorbing)
states

What would the matrix look like?

P =

∣∣∣∣∣
∣∣∣∣∣ Q R
0 I

∣∣∣∣∣
∣∣∣∣∣

I Q is a q × q matrix that represents the transition probabilities from transient
states to transient states.

I R is a q × r matrix that represents the transition probabilities from transient
states to absorbing states.

I 0 is an r × q matrix of all zeros that represents the transition probabilities
from absorbing states to transient states.

I I is an r × r identity matrix that represents the transition probabilities from
absorbing states to absorbing states.

(I − Q)−1 → Expected time spent

(I − Q)−1R → Probability of absorption
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Discrete Time Markov Chains Mean Time Spent in Transient States

Mean (Expected) Time Spent in Transient States
Sij : expected number of time periods MC is in j given that it starts in i

Note that both i and j should be transient!

Conditioning on the initial transition

sij = δij +
∑

k
Pikskj

δij =
{
1 when i = j

0 otherwise

sij = δij +
∑

k∈transient states
Pikskj

Using matrix notation (Q: one-step transition submatrix for transient states only)

S = I + QS
(I − Q)S = I
S = (I − Q)−1
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Discrete Time Markov Chains Mean Time Spent in Transient States

Absorbing Chains

Example: 2 players A and B have $2 each. They bet $1 at a time and they keep
playing until one of them goes broke. A wins each bet with probability 1/3. What
is the probability that player A loses the game? What is the expected number of
rounds B bets his/her last dollar?
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Discrete Time Markov Chains Mean Time Spent in Transient States

A Random Walk Model

A MC model whose state space is given by integers i = 0,±1,±2, . . . is said to be
a random walk if for some number 0 < p < 1

Pi,i+1 = p, i = 0,±1,±2, . . .

Pi,i−1 = 1− p, i = 0,±1,±2, . . .
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Discrete Time Markov Chains Time Reversible Markov Chains

Time Reversible Markov Chains
Consider a stationary ergodic Markov chain having transition probabilities Pij and
stationary probabilities πi

Suppose that starting at some time we trace the sequence of states going
backward in time
Transition probabilities of that system is

Qij = P(Xm = j |Xm+1 = i) = P(Xm+1 = i |Xm = j)P(Xm = j)
P(Xm+1 = i) = Pjiπj

πi

If Qij = Pij ∀i , j → chain is time reversible

Using the first equation, time reversibility implies

Pijπi = Pjiπj

i.e., the rate of transition from j to i is equal to the rate of transition from i to j
Example: Consider a random walk with states 0, 1, . . . ,M and transition
probabilities Pi,i+1 = αi = 1− Pi,i−1, i = 1, . . . ,M − 1, P0,1 = α0 = 1− P0,0,
PM,M = αM = 1− PM,M−1. Is this chain time reversible?
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Discrete Time Markov Chains Homework Assignment

Homework Assignment

1 A transition probability matrix P is said to be doubly stochastic if the sum
over each column equals one; that is,

∑
i Pij = 1,∀j . If such a chain is

irreducible and aperiodic and consists of M + 1 states 0, 1, . . . ,M, show that
the limiting probabilities are given by πj = 1/(M + 1), j = 0, 1, . . . ,M.

2 Each morning an individual leaves his house and goes for a run. He is equally
likely to leave either from his front or back door. Upon leaving the house, he
chooses a pair of running shoes (or goes running barefoot if there are no
shoes at the door from which he departed). On his return he is equally likely
to enter, and leave his running shoes, either by the front or back door. If he
owns a total of 4 pairs of running shoes, what proportion of the time does he
run barefooted?

3 A flea moves around the vertices of a square in the following manner:
Whenever it is at vertex i it moves to its clockwise neighbor vertex with
probability pi and to the counterclockwise neighbor with probability
qi = 1− pi , i = 1, 2, 3, 4. Find the proportion of time that the flea is at each
of the vertices. How often does the flea make a counterclockwise move which
is then followed by five consecutive clockwise moves?
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Discrete Time Markov Chains Homework Assignment

Homework Assignment

4 Three out of every four trucks on the road are followed by a car and one out
of every five cars is followed by a truck. What fraction of vehicles on the road
are trucks?

5 A certain town never has two sunny days in a row. Each day is classified as
being either sunny, cloudy (but dry), or rainy. If it is sunny one day, then it is
equally likely to be either cloudy or rainy the next day. If it is rainy or cloudy
one day, then there is one chance in two that it will be the same the next day,
and if it changes then it is equally likely to be either of the other two
possibilities. Show that this Markov chain is time reversible.

6 A taxi driver provides service in two zones of a city. Fares picked up in zone
A will have destinations in zone A with probability 0.6 or in zone B with
probability 0.4. Fares picked up in zone B will have destinations in zone A
with probability 0.3 or in zone B with probability 0.7. The driver’s expected
profit for a trip entirely in zone A is 6; for a trip entirely in zone B is 8; and
for a trip that involves both zones is 12. Find the taxi driver’s average profit
per trip.
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Discrete Time Markov Chains Homework Assignment

Homework Assignment
7 A group of n processors is arranged in an ordered list. When a job arrives,

the first processor in line attempts it; if it is unsuccessful, then the next in
line tries it; if it too is unsuccessful, then the next in line tries it, and so on.
When the job is successfully processed or after all processors have been
unsuccessful, the job leaves the system. At this point we are allowed to
reorder the processors, and a new job appears. Suppose that we use the
one-closer reordering rule, which moves the processor that was successful one
closer to the front of the line by interchanging its position with the one in
front of it. If all processors were unsuccessful (or if the processor in the first
position was successful), then the ordering remains the same. Suppose that
each time processor i attempts a job then, independently of anything else, it
is successful with probability pi . Define an appropriate Markov chain to
analyze this model. Show that this Markov chain is time reversible. Find the
long-run probabilities.

8 On a chessboard compute the expected number of plays it takes a knight,
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Markov Decision Processes

MDP Definition

Infinite horizon probabilistic dynamic programming problems are called
Markov decision processes (or MDPs).

We find a stationary policy that maximizes the expected per-period reward
earned over an infinite horizon.
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Markov Decision Processes

MDP Definition

Consider a process that is observed at discrete time points to be in any one
of M possible states.

After observing the state of the process, an action (decision) must be chosen,
and we let A, assumed finite, denote the set of all possible actions.
If the process is in state i at time n and action a is chosen, then the next state
of the system is determined according to the transition probabilities Pij(a)
That is P(Xn+1 = j |X0, a0,X1, a1, ...,Xn = i , an = a) = Pij(a)
Markovian Property
During a period in which the state is i and an action a is chosen, an expected
re- ward of ria is received.
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Markov Decision Processes

Example

At the beginning of each week, a machine is in one of four conditions (states):
excellent (E), good (G), average (A), or bad (B). The weekly revenue earned by a
machine in each type of condition is as follows: excellent, $100; good, $80;
average, $50; bad, $10. After observing the condition of a machine at the
beginning of the week, we have the option of instantaneously replacing it with an
excellent machine, which costs $200. The quality of a machine deteriorates over
time, as shown below. For this situation, determine the state space, decision
(action) sets, transition probabilities, and expected rewards.

Next week
Present E G A B

E .7 .3 0 0
G 0 .7 .3 0
A 0 0 .6 .4
B 0 0 0 1
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Markov Decision Processes

Solution
State Space
{E, G, A, B}

Set of Actions
R: replace at beginning of current period
NR: do not replace during current period

Transition Probabilities
P(E |NR,E ) = .7
P(A|NR,G) = .3
P(B|NR,B) = 1
P(E |G ,R) = P(E |A,R) = P(E |B,R) = .7
P(G |G ,R) = P(G |A,R) = P(G |B,R) = .3
P(A|G ,R) = P(A|A,R) = P(A|B,R) = 0
etc.

Rewards
rE ,NR = $100, rG,NR = $80, rA,NR = $50, rB,NR = $10,
rE ,R = rG,R = rA,R = rB,R = −$100.
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Markov Decision Processes

Solution
max z = 100πENR + 80πGNR + 50πANR + 10πBNR − 100(πGR + πAR + πBR)

s.t. πENR + πGNR + πANR + πBNR + πGR + πAR + πBR = 1

πENR = .7(πENR + πGR + πAR + πBR)

πGNR + πGR = .3(πGR + πAR + πBR + πENR) + .7πGNR

πAR + πANR = .3πGNR + .6πANR

πBR + πBNR = πBNR + .4πANR

πENR , πGNR , πANR , πBNR , πGR , πAR , πBR ≥ 0

This LP has an optimal solution in which for each state, at most one action has a
π value greater than zero. Thus, the optimal solution to this LP will occur for a
stationary policy.
The optimal objective function value for this LP is z = 60. The only nonzero
decision variables are pENR = .35, pGNR = .50, pAR = .15. Thus, an average of $60
profit per period can be earned by not replacing an excellent or good machine but
replacing an average machine.
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Markov Decision Processes

MDP Summary

max z =
∑

i

∑
a
πiaria

s.t.
∑

i

∑
a
πia = 1∑

j

∑
a
πja =

∑
i

∑
a
πiaPij(a) ∀j

πia ≥ 0 ∀i , a

Dr. Erhun Kundakcioglu (Ozyegin University) IE532 Stochastic Models 112 / 148



Markov Decision Processes

MDP Summary

max z =
∑

i

∑
a
πiaria

s.t.
∑

i

∑
a
πia = 1

∑
j

∑
a
πja =

∑
i

∑
a
πiaPij(a) ∀j

πia ≥ 0 ∀i , a

Dr. Erhun Kundakcioglu (Ozyegin University) IE532 Stochastic Models 112 / 148



Markov Decision Processes

MDP Summary

max z =
∑

i

∑
a
πiaria

s.t.
∑

i

∑
a
πia = 1∑

j

∑
a
πja =

∑
i

∑
a
πiaPij(a) ∀j

πia ≥ 0 ∀i , a

Dr. Erhun Kundakcioglu (Ozyegin University) IE532 Stochastic Models 112 / 148



Markov Decision Processes

MDP Summary

max z =
∑

i

∑
a
πiaria

s.t.
∑

i

∑
a
πia = 1∑

j

∑
a
πja =

∑
i

∑
a
πiaPij(a) ∀j

πia ≥ 0 ∀i , a

Dr. Erhun Kundakcioglu (Ozyegin University) IE532 Stochastic Models 112 / 148



Continuous Time Markov Chains
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Continuous Time Stochastic Processes

In previous models, time was discrete, i.e., t = 0, 1, . . .

However, in many stochastic processes the system is observed continuously
over time, i.e., t ≥ 0.
Now, we will discuss properties of continuous stochastic processes with the
Markovian property.
Continuous time Markov chains also provide a link to the queueing theory.
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Continuous Time Markov Chains Continuous Time Stochastic Processes

Continuous Time Stochastic Processes

X (t): State of the continuous time stochastic process at time t, t ≥ 0

X (t) takes one of its possible values over some interval 0 ≤ t < t1, then will
jump to another value over the interval t1 ≤ t < t2, etc.
These points in time t1, t2, . . . are random variables and they are not
necessarily integers

Markovian Property
A continuous time stochastic process {X (t), t ≥ 0} is said to have the Markovian
property if ∀i , j ,∀s, t ≥ 0, 0 ≤ r < s, x(r) we have

P(X (s + t) = j |X (s) = i ,X (r) = x(r), 0 ≤ r < s) = P(X (s + t) = j |X (s) = i)

Stationarity
If the probability is independent of the current time, we say that the transition
probability is stationary.

P(X (s + t) = j |X (s) = i) = P(X (t) = j |X (0) = i)
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Continuous Time Markov Chains

A continuous time stochastic process {X (t), t ≥ 0} is a continuous time
Markov chain if it has the Markovian property.

Pij(t) is the probability that the system is in state j after time t, given that it
is currently in state i .
We assume that

limt→0 Pij(t) =
{
1 if i = j

0 if i 6= j

Note: In this course we will be dealing with continuous time Markov chains
where

I the state space is finite
I the transition probabilities are stationary

but keep in mind that there is a lot beyond these restrictive assumptions.
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Continuous Time Markov Chains

Alternatively, a continuous time Markov chain is a stochastic process such
that

I The amount of time spent in state i before making a transition into some
other state is distributed exponentially with mean 1/qi .

I When the process leaves state i , it next enters state j with some probability
Pij , where

Pii = 0 ∀i ,
∑

j Pij = 1 ∀i
The next state visited is independent from Ti .
In other words, a continuous time Markov chain is a continuous process that
moves from state to state according to a discrete time Markov chain, but is
such that the amount of time spent in each state, before proceeding to the
next state, is exponentially distributed.
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Continuous Time Markov Chains Exponential Distribution

Why Exponential?

Markovian Property
A stochastic process has the Markov property if the conditional probability
distribution of future states of the process (conditional on both past and present
states) depends only upon the present state, not on the sequence of events that
preceded it.

In other words, Markovian property refers to the memoryless property of a
stochastic process.

Memoryless Property of Exponential
Do you remember the proof?

P{X > s + t|X > t} = P{X > s} ∀s, t ≥ 0
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Continuous Time Markov Chains Exponential Distribution

Examples

Amount of time one spent in a bank is exponentially distributed with mean
10 min. What is the probability that a customer will spend more than 15
min. in the bank? What is the probability that a customer will spend more
than 15 min. in the bank given that she is still in the bank after 10 min.?

A post office is run by two clerks. Suppose that when Mr. Smith enters the
system, he discovers that Mr. Jones is being served by one of the clerks and
Mr. Brown by the other. Suppose also that Mr. Smith is told that his service
will begin as soon as either Mr. Jones or Mr. Brown leaves. If the amount of
time that a clerk spends with a customer is exponentially distributed with
mean 1/λ, what is the probability that, of the three customers, Mr. Smith is
the last to leave the post office?

Important Note: Always pay attention to the units of exponential/poisson
parameters! Parameters will not always be given explicitly.
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Continuous Time Markov Chains Poisson Process

Poisson Process

A stochastic process {N(t), t ≥ 0} is said to be a counting process if N(t)
represents the total number of “events” that occur by time t.

The counting process {N(t), t ≥ 0} is said to be a Poisson process having
rate λ, λ > 0, if:

I N(0) = 0.
I The process has independent increments.
I The number of events in any interval of length t is Poisson distributed with

mean λt.
That is ∀s, t ≥ 0
P{N(t + s)− N(s) = n} = e−λt (λt)n

n! , n = 0, . . .
Note that Poisson process has stationary increments and E [N(t)] = λt
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Continuous Time Markov Chains Key Properties

Key Properties

Next we present 4 key properties related to Exponential distribution / Poisson
processes.

Make sure you know how to prove each of those statements
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Continuous Time Markov Chains Key Properties

Key 1: Interarrival times of Poisson processes are Exponential

Proof: Consider a Poisson process with rate λ, and let us denote the time of the
first event by T1. By induction. Prove that first event interarrival is exponentially
distributed.

P(T1 > t) = P(N(t) = 0) = e−λt

Suppose n-th interarrival is exponentially distributed and prove n + 1-st:

P(N(t + s)− N(s) = 0|N(s) = n) = P(N(t + s) = n, N(s) = n)
P(N(s) = n)

= P(N(t + s)− N(s) = 0, N(s) = n)
P(N(s) = n)

= P(N(t + s)− N(s) = 0)P(N(s) = n)
P(N(s) = n) due to independent increments

= P(N(t + s)− N(s) = 0) = e−λt
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Continuous Time Markov Chains Key Properties

Key 2: Fractions of Poisson process are Poisson

Consider a Poisson process with rate λ. Suppose each event is of type i
independently with probability pi . Then type i events are Poisson distributed
with rate λpi .

Proof: ?

Remember the example: Suppose that the number of people who visit a yoga
studio each day is a Poisson random variable with mean λ. Suppose further that
each person who visits is, independently, female with probability p or male with
probability 1− p. Find the joint probability that exactly n women and m men visit
the academy today.
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Continuous Time Markov Chains Key Properties

Key 3: Minimum of Exponentials are Exponential

X1 is exponentially distributed with rate µ1,
X2 is exponentially distributed with rate µ2,

X1 and X2 are independent.

min(X1,X2) is exponentially distributed with rate µ1 + µ2

This result can be generalized to more than two variables.

Rate of minimum is sum of rates.
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Continuous Time Markov Chains Key Properties

Key 4: Probability that one Exponential is smaller than other(s)

X1 is exponentially distributed with rate µ1,
X2 is exponentially distributed with rate µ2,

X1 and X2 are independent.

P(X1 < X2) = µ1
µ1+µ2

This result can be generalized to more than two variables.

P(Xi = min(X1,X2, . . . ,Xn)) = µi∑n
j=1 µj

Probability that one variable is the minimum of a set is equal to
its rate divided by sum of all rates.
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Continuous Time Markov Chains Key Properties

Example

Suppose you are one of the two clerks in Şok Market. If nobody is in the system,
the next customer chooses your register with probability .75. Assume 18
customers arrive the register area in an hour on average with a Poisson
distribution. Time it takes you (other clerk) to serve a customer is 10 (5) minutes
on average and both service times are exponentially distributed. Finally, suppose
both clerks share the same queue (line).

When you are serving someone and the other clerk is empty, what is the
probability that you will be done before s/he starts serving someone?
When both clerks are busy, what is the probability that you will be done first?
When both clerks are busy and there is nobody in the queue, what is the
probability that someone is served before someone joins the queue?
When both clerks are busy and there is someone in the queue, what is the
expected time that the person in line waits?
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Continuous Time Markov Chains Key Properties
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When both clerks are busy and there is someone in the queue, what is the
expected total time spent for the person in line?

When both clerks are busy and there is someone in the queue, what is the
probability that you are done with your current service, before a female joins
the queue? (Suppose each arrival is female with probability 2/3)
In the long run, what is the fraction of time you are working? (up next)
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Continuous Time Markov Chains Homework Assignment

Homework Assignment
1 In a system, an incoming customer is served by either clerk 1 or 2, where

service time for clerk i is exponentially distributed with mean (i + 1) hours.
Suppose that whichever clerk finishes service first, starts serving a customer
from the queue immediately. If both servers are busy and there are two
people waiting in the queue, what is the expected time spent to serve these
four customers? Suppose that nobody else can enter the system.

Clerk 1

Clerk 2

You

Clerk 2

Clerk 1

Clerk 3

Scenario in question 1 Scenario in question 2
2 In a bank, an incoming customer is first served by either clerk 1 or 2, and

next by clerk 3. In front of clerk 3, there is a FIFO queue: that is clerk 3
serves the customers in the order they are done with either clerk 1 or 2.
Assume service time for clerk i is exponentially distributed with mean 15× i
minutes. If there are a total of 3 customers to be served and you are currently
being served by clerk 1, find your expected time spent in this system.
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Continuous Time Markov Chains Homework Assignment

Homework Assignment

3 There is a dog and a cat whose lifetimes are independent exponential random
variables with respective rates λd and λc . One of them has just died. Find
the expected additional lifetime of the other pet.

4 A doctor has scheduled two appointments, one at 1 P.M. and the other at
1:30 P.M. The amounts of time that appointments last are independent
exponential random variables with mean 30 minutes. Assuming that both
patients are on time, find the expected amount of time that the 1:30
appointment spends at the doctor’s office.

5 Each entering customer must be served first by server 1, then by server 2,
and finally by server 3. The amount of time it takes to be served by server i
is an exponential random variable with rate µi , i = 1, 2, 3. Suppose you enter
the system when it contains a single customer who is being served by server
3. Find the probability that server 3 will still be busy when you move over to
server 2. Find the probability that server 3 will still be busy when you move
over to server 3. Find the expected amount of time that you spend in the
system. (Whenever you encounter a busy server, you must wait for the
service in progress to end before you can enter service.)
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Continuous Time Markov Chains Homework Assignment

Homework Assignment

6 Suppose X1 and X2 are two exponentially distributed random variables. Can
you find max(X1,X2)?

7 In a sequential setup, where you are behind someone, would you rather have
the faster or slower server first?
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Continuous Time Markov Chains Homework Assignment

Kendall’s Notation

Example: M/M/1/K/N/FIFO

I M denotes arrivals (M: Markovian (Poisson), G : General Distribution, E , etc.)
I M denotes service (M: Markovian (Exponential service), D: Deterministic, G ,

E , etc.)
I 1 denotes # of servers (1,2,3..)
I K denotes system capacity (default ∞)
I N denotes calling population (default ∞)
I FIFO denotes queue discipline (SIRO, LIFO, etc.)
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Continuous Time Markov Chains Limiting Probabilities for Continuous Time Markov Chains

Limiting Probabilities for Continuous Time Markov Chains

RATE IN = RATE OUT
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Continuous Time Markov Chains Limiting Probabilities for Continuous Time Markov Chains

Example

Consider an M/M/1 system. Assume λ (µ) is the arrival (service) rate.

It is intuitive that λ must be less than µ for limiting probabilities to exist. If
λ > µ, the queue size will go to infinity. Don’t worry about the exceptional case
of λ = µ (i.e., symmetric random walk), which is null recurrent and thus has no
limiting probabilities.

Assuming λ < µ, what is the utilization of the server in the long run?
What is the expected number of people in the system?
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limiting probabilities.

Assuming λ < µ, what is the utilization of the server in the long run?
What is the expected number of people in the system?

Dr. Erhun Kundakcioglu (Ozyegin University) IE532 Stochastic Models 133 / 148



Continuous Time Markov Chains Limiting Probabilities for Continuous Time Markov Chains

Example

Consider an M/M/1 system. Assume λ (µ) is the arrival (service) rate.

It is intuitive that λ must be less than µ for limiting probabilities to exist. If
λ > µ, the queue size will go to infinity. Don’t worry about the exceptional case
of λ = µ (i.e., symmetric random walk), which is null recurrent and thus has no
limiting probabilities.

Assuming λ < µ, what is the utilization of the server in the long run?

What is the expected number of people in the system?

Dr. Erhun Kundakcioglu (Ozyegin University) IE532 Stochastic Models 133 / 148



Continuous Time Markov Chains Limiting Probabilities for Continuous Time Markov Chains

Example

Consider an M/M/1 system. Assume λ (µ) is the arrival (service) rate.

It is intuitive that λ must be less than µ for limiting probabilities to exist. If
λ > µ, the queue size will go to infinity. Don’t worry about the exceptional case
of λ = µ (i.e., symmetric random walk), which is null recurrent and thus has no
limiting probabilities.

Assuming λ < µ, what is the utilization of the server in the long run?
What is the expected number of people in the system?

Dr. Erhun Kundakcioglu (Ozyegin University) IE532 Stochastic Models 133 / 148



Continuous Time Markov Chains Limiting Probabilities for Continuous Time Markov Chains

Example

Suppose you are one of the two clerks in Şok Market. If nobody is in the system,
the next customer chooses your register with probability 2/3. Assume 9 customers
arrive the register area in an hour on average with a Poisson distribution. Time it
takes you (other clerk) to serve a customer is 10 (5) minutes on average and both
service times are exponentially distributed. Finally, suppose both clerks share the
same queue (line).

In the long run, what is the fraction of time you are working?
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Continuous Time Markov Chains Limiting Probabilities for Continuous Time Markov Chains

Example

A job shop consists of three machines and two repairmen. The amount of time a
machine works before breaking down is exponentially distributed with mean 10. If
the amount of time it takes a single repairman to fix a machine is exponentially
distributed with mean 8, then what is the average number of machines not in use?

What proportion of time are both repairmen busy?
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Continuous Time Markov Chains Limiting Probabilities for Continuous Time Markov Chains

Example

Consider a two-server parallel queuing system where customers arrive according to
a Poisson process with rate 4 per minute and where the service times are
exponential with mean 30 seconds. Moreover, suppose that arrivals finding both
servers busy and one person in the queue immediately depart without receiving
any service (such cost is said to be lost). Assume that a server charges $5/min.
What is the rate charged by this system?

Suppose the customers rejected by this
system enters another system; what is the rate and distribution of these rejected
customers?
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Continuous Time Markov Chains Limiting Probabilities for Continuous Time Markov Chains

Example

Camera store inventory — a continuous representation
Suppose D ∼ Poisson(2/week)
Inventory management policy is a continuous review policy

I The owner places an order of three units if no camera is left in stock
I That is a (Q,R) policy with Q = 3 & R = 0.
I Assume zero lead time

We are interested in modeling the stock level at the store over time
Assume that the inventory holding cost is $2/item/week and there is a fixed
ordering cost of $10/order.
Find the expected monthly inventory holding cost and ordering cost.

What would you change if R = 1 and lead time is exponentially distributed
with mean one day? Assume you allow backorders and place an order of 3
items whenever your inventory position hits 1.
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Continuous Time Markov Chains Homework Assignment

Homework Assignment
1 What is the expected number of people in the system for an M/M/3 system?
2 Consider a general birth and death process with birth rates λ and death rates
µ. Starting with a population of size i , what is the expected time to reach a
population of size j , j > i?

3 Each time a machine is repaired it remains up for an exponentially distributed
time with rate λ. Failures can be of two types: repair for a type 1 (2) failure
is exponential with rate µ1 (µ2). Each failure is, independent of the failure
time, a type 1 failure with probability p and a type 2 failure with probability
1− p. What proportion of time is the machine down due to a type 1 and 2
failure? What proportion of time is it up?

4 Customers arrive at a two-server station in accordance with a Poisson process
having rate λ. Upon arriving, they join a single queue. Whenever a server
completes a service, the person first in line enters service. The service times
of server i are exponential with rate µi , i = 1, 2, where µ1 + µ2 > λ. An
arrival finding both servers free is equally likely to go to either one. Define an
appropriate CTMC for this model, show it is time reversible, and find the
limiting probabilities. What should we change regarding an arrival finding
both servers free so that this chain is not time reversible?
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Queueing Theory

1 Introduction and Review of Probability

2 Conditional Probability and Expectation

3 Discrete Time Markov Chains

4 Markov Decision Processes

5 Continuous Time Markov Chains

6 Queueing Theory
Introduction
Little’s Law
Quantities of Interest
Network of Queues
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Queueing Theory Introduction

A Simple Example

Population size: 10
# of servers: 2
Service rate: 2/hr (for each server)
Everyone in the population tend to arrive the system ∼ Poisson (4/hr)

What is the probability that the shop is idle?
What is the fraction of time server 1 is idle?
What is the expected number of people in the system?
What is the expected time spent in the system for a person?
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Queueing Theory Little’s Law

Queueing Theory

Fundamental Metrics

L : expected # of people in system
Lq : expected # of people in queue
Ls : expected # of people in service

W : expected time spent in system
Wq expected time spent in queue
Ws expected time spent in service

λa : effective arrival rate = lim
t→∞

N(t)
t

Dr. Erhun Kundakcioglu (Ozyegin University) IE532 Stochastic Models 141 / 148



Queueing Theory Little’s Law

Queueing Theory

Fundamental Metrics

L : expected # of people in system
Lq : expected # of people in queue
Ls : expected # of people in service
W : expected time spent in system
Wq expected time spent in queue
Ws expected time spent in service

λa : effective arrival rate = lim
t→∞

N(t)
t

Dr. Erhun Kundakcioglu (Ozyegin University) IE532 Stochastic Models 141 / 148



Queueing Theory Little’s Law

Queueing Theory

Fundamental Metrics

L : expected # of people in system
Lq : expected # of people in queue
Ls : expected # of people in service
W : expected time spent in system
Wq expected time spent in queue
Ws expected time spent in service

λa : effective arrival rate = lim
t→∞

N(t)
t

Dr. Erhun Kundakcioglu (Ozyegin University) IE532 Stochastic Models 141 / 148



Queueing Theory Little’s Law

Little’s Law

L = λaW

Lq = λaWq

Ls = λaWs

L = Lq + Ls

W = Wq + Ws
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Queueing Theory Little’s Law

Queueing Theory

Example:

Consider an M/M/1 system
λ = 2
µ = 3

Calculate expected # of people in system, expected # of people in queue,
expected # of people in service, expected time spent in system, expected time
spent in queue, and expected time spent in service.

L = λ
µ−λ

W = 1
µ−λ

Lq = W − 1
µ = λ2

µ(µ−λ)

Wq = λ
µ(µ−λ)

What would you change if it was an M/M/1/K system? (aside from limiting
probability calculation: sum of finite series)
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Queueing Theory Little’s Law

Steady-State Probabilities

πn : lim
t→∞

P{X (t) = n}

an: proportion of customers to find n in the system
dn: proportion of customers leaving behind n in the system

In any system in which customers arrive and depart one at a time, an = dn
Proof: Using time reversibility, rate of n→ n + 1 = rate of n + 1→ n

an = rn→n+1
arrival rate , dn = rn+1→n

departure rate

PASTA Property
Poisson arrivals see time averages, πi = ai = di , ∀i
I use π to indicate limiting probabilities but the book uses P for CTMCs.
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Queueing Theory Little’s Law

Queueing Theory

Example: Calculate L and Wq for M/M/1/N.

Example: In an M/M/1/2/3 system, what is the expected time spent in
queue?

Example: In an M/M/1 system with balking (customers finding n other
people in the system joins with probability αn), what is the expected time
spent in queue?
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Queueing Theory Quantities of Interest

Quantities of Interest

Average length of a busy period: E [B]

π0 = E [I]
E [I] + E [B] , E [I] = 1/λ0 ⇒ E [B] = 1− π0

λ0π0

Tn: amount of time during a busy period that there are n in the system

πn = E [Tn]
E [I] + E [B] = E [Tn]π0

E [I] ⇒ E [Tn] = πn
λ0π0

Note that we can double check E [B] using

B =
∞∑

n=1
Tn ⇒ E [B] =

∞∑
n=1

E [Tn] = 1
λ0π0

∞∑
n=1

πn = 1− π0
λ0π0

Read Shoe Shine Shop example in Section 8.3.
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Queueing Theory Network of Queues

Network of Queueing Systems

Open (tandem / sequential) systems: customers are able to enter and depart
the system

Closed systems: new customers never enter and existing ones never depart

Use overall system arrival rate for Little’s Law.

As service rates are supposed to be larger than arrival rates, departure rate from a
subsystem is equal to its arrival rate.
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Queueing Theory Network of Queues

Open Network of Queueing System

Example:

Consider a system of two servers where customers from outside the system arrive
at server 1 at a Poisson rate 4 and at server 2 at a Poisson rate 5. The service
rates of 1 and 2 are respectively 8 and 10. A customer upon completion of service
at server 1 is equally likely to go to server 2 or to leave the system whereas a
departure from server 2 will go 25 percent of the time to server 1 and will depart
the system otherwise. Determine the limiting probabilities, L and W .
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